
In the supplementary material, we present more details
on the implementation and experimental settings. We also
provide detailed performance data, analysis of anchor points
and learned attention weights, and more qualitative and quan-
titative results on geometry matching, visual localization, and
other tasks.

I. IMPLEMENTATION DETAILS

a) Feature Extractor: The feature extractor consists of a
backbone based on ResNet [1] and an upsampling module.
We adopt ResNet-18 as the backbone which contains one
convolutional layer, one batch norm layer, and an activation
layer, followed by three residual blocks. We remove the max
pooling layer from the original ResNet-18 to ensure that the
output feature maps are 1

2 and 1
8 of the input image size. The

upsampling module performs upsampling in two stages. In
each stage, we first upsample the input feature map by a scale
of 2, then concatenate it with the corresponding output of the
backbone model and finally feed the concatenated feature to a
refinement block. The detailed model architecture is illustrated
in Fig. 1.

b) Training Strategy: We use MegaDepth [2] and Scan-
Net [3] dataset for training. For MegaDepth, we use the
preprocessed data from [4], and for ScanNet, We use the
original data with the training image pairs from [5]. Since
the preprocessed MegaDepth data from [4] does not contain
ground truth depth maps, we get the original dataset from
the MegaDepth project page 1. Since the depth maps from the
original dataset are size-free, we crop and resize them to match
the preprocessed images. Then we preprocess the images using
the method proposed in CAPS [4]. For each image with an
arbitrary size, we extract the largest rectangle in the center
of the image with an aspect ratio of 4 : 3. We then crop the
image using the rectangle and scale it to 640× 480.

During training, given a pair of input images Ia and Ib, we
first generate the visibility map for Ia and then calculate the
visibility of each pixel by reprojecting it to Ib and comparing
the reprojected point’s depth with the corresponding depth
from Ib. We consider a pixel in Ia is visible in Ib if and only
if the relative depth error (d−dgt

dgt
) is no more than a threshold

(we set 0.1 for MegaDepth and 0.2 for ScanNet). Based on
the visibility map, we uniformly sample 10×N anchor points
candidates for training. Then we apply a grid filter to further
select N anchor points which are evenly distributed across the
image. Specifically, we divide the image to 4⌊log4 N⌋ grids of
the same size. In each pass, we select one random candidate
from each grid (if existing). We repeat the same procedure
until N points are selected.

Our model is completely trained from scratch. The learning
rate is initialized to 0.0001, and reduced by half after each 50K
iterations. We first train the model for 120K iterations using
the ground truth anchor points. Then we replace the ground
truth anchor points with the output of SuperGlue [6] and
fine-tune for another 20K iterations. The fine-tuning process

1https://www.cs.cornell.edu/projects/megadepth/

narrows down the gap between anchor points from ground
truth and SuperGlue matches especially when the matching
predicted by SuperGlue is not highly reliable. It improves
the accuracy of pose estimation of ScanNet by approximately
4 points, while does not influence the result of MegaDepth,
because SuperGlue performs much better on MegaDepth.
When testing, we limit the number of input anchor points to
500.

We use PyTorch [7] to train our model on a single NVIDIA
Tesla V100 with batch size 5, which requires approximately
28 GB memory. The total training time is about 36 hours.

II. EXPERIMENTAL DETAILS

In the evaluation of geometric matching, our goal is to
evaluate the average quality of correspondences of all pixels
between image pairs. During the experiment in the main paper,
we randomly sample visible points between image pairs and
evaluate them only, to increase the evaluation efficiency. When
evaluating our model on HPatches [8], we divide the image
into grids of 16 × 16 size, and choose all grid centers which
have correspondences on the other image (calculated by their
homography). As for MegaDepth [2], we uniformly sample
500 visible points based on their visibility map. We apply the
sampling strategy for both images and combine the selected
points as our query points. We do not filter out any predicted
correspondences in this experiment and evaluate all of them
by the l2-distance to the ground truth correspondences.

In the ablation study, all of the tested models are trained
with ground truth anchor points, and all query points are
generated from SIFT [9]. For every image pair, we filter out
all the correspondences with the cycle consistency larger than
10 pixels and finally select the top 2000 matches as the output.

III. PERFORMANCE DATA

We detail the time and memory cost of each component in
our model. We test on 200 image pairs with size 640 × 480,
where 2000 query points are sampled for each image pair. We
divide our inference pipeline into multiple stages and record
the time and memory cost for each stage. The memory cost is
measured by the following steps: at the end of each stage, we
first query the total cached memory in GPU (pre-memory).
Then we clear all the GPU cache and query the memory
usage again (post-memory). We report the pre-memory of each
stage as the total memory and the difference between the pre-
memory of this stage and the post-memory of the previous
stage as the net memory of this stage. We show the time and
memory cost in Tab. I.

We show that the cost of our message-passing is much less
in terms of time and memory compared to the total cost while
generating local features from the backbone and predicting the
final correspondences being the bottleneck of the full pipeline.
By further optimizing these procedures, we can make our
model even more lightweight and efficient.

We also compare our model with two state-of-the-art works
COTR [10] and DualRC-Net [11]. All the models are evaluated
on an NVIDIA GeForce GTX 1080 Ti using 20 test image
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Fig. 1. Overview of the feature extractor. The left shows the overall model architecture, and the right shows details of the refinement block and the residual
block.

TABLE I
TIME AND MEMORY COST OF EACH STAGE. EACH COLUMN FROM TOP TO BOTTOM INDICATES CUMULATIVE TIME, NET TIME, TOTAL MEMORY AND NET

MEMORY FOR EACH STAGE. EACH ROW FROM LEFT TO RIGHT REPRESENTS THE STAGES INCLUDING EXTRACTING LOCAL FEATURES FROM THE
BACKBONE AND THE FEATURES OF ANCHOR POINTS BY INTERPOLATION, PROPAGATING THROUGH INTRA-POINTS, INTER-POINTS, AND

POINTS-TO-IMAGE MESSAGE-PASSING LAYERS, REFINING THE FEATURES AND GENERATING THE FINAL CORRESPONDENCE OUTPUT.

Feature Extraction Propagation Refinement Output

Local
features

Anchor
point
features

Intra- and
Inter-points

Points-to-
image

Refined fea-
tures

Final corre-
spondence

Total time(ms) 26 58 74 82 87 173
Net time(ms) 26 32 16 8 5 86

Total mem(GB) 1.316 0.490 0.493 0.581 1.062 1.485
Net mem(GB) 1.006 0.090 0.092 0.174 0.578 0.634

pairs with 2000 points queried for each pair. The result
are shown in Tab. II. By comparing the runtime and the
memory for different resolutions, we find that our method
significantly outperforms in the high-resolution setting. Note
that COTR [10] always resizes and crops the input image to
256×256 no matter how large the input is.

IV. MORE EXPERIMENTAL ANALYSIS

a) Additional Ablation Study on HPatches: In addition to
our ablation study in the main paper, which uses MegaDepth
as testing data, we also provide ablative results tested on
HPatches [8]. We test our model with three variants: model
w/ DS downsamples input images to 640*480, model w/ SIFT
uses anchor points matched by FLANN on SIFT feature, and
model w/o APE removes the adaptive position embedding
during the training. Results are shown in Tab. III. The score
of first two variants shows that our model is robust to low
resolution of inputs and unreliable anchor points. Although
the anchor points by SIFT are highly unreliable to estimate
accurate correspondence, our model with such sparse prior is
able to generate a dense feature map and achieve comparable
matching accuracy with the one using SuperGlue [5]. The last

one proves the effectiveness of the proposed adaptive position
embedding.

b) Oracle Anchor Points: In this main paper, we have
shown that our model is robust to the quantity and quality
of anchor points to some degree in Sec 4.4. However, the
quality improvement of anchor points can help boost the model
performance. To verify this, we conduct a study of oracle
anchor points that indicate very confident correspondence
prior. At inference, we progressively improve anchor points
generated by SuperGlue [5] by replacing a certain number of
the anchor points using new anchor points randomly sampled
from the ground truth correspondence.

We show the quantitative results on the task of indoor pose
estimation in Tab. IV with different numbers of ground truth
anchor points (i.e. 20, 50, 100). We also demonstrate the quali-
tative results of extremely difficult cases where SuperGlue [5]
almost fails to predict correct correspondences (see Fig. 2).
Our model has shown great potential to produce more accurate
correspondences given more confident anchor points as input,
even in the very challenging application scenarios.

c) Attention Weights: In the intra-points message-passing
layer and points-to-image message-passing layer, we use the
attention mechanism to propagate information across all intra-



TABLE II
PERFORMANCE COMPARISON. THE LEFT TWO COLUMNS ARE TIME AND MEMORY COSTS TESTED WITH LOW RESOLUTION INPUTS (480×640) AND THE
RIGHT TWO COLUMNS ARE RESULTS WITH HIGH RESOLUTION INPUTS (1200×1600). FOR FAIRNESS, WE ALSO REPORT THE SUMMED UP COST OF OUR

MODEL AND THE PROCESS OF GENERATING ANCHOR POINT FROM SUPERGLUE [6].

Resolution/Metrics 480×640/Time 480×640/Memory 1200×1600/Time 1200×1600/Memory

DualRC-Net [11] 0.25s 0.77G 4.34s 8.70G
COTR [10] 200s 5.45G 200s 5.45G

Ours 0.18s 1.17G 1.11s 5.69G
Ours(w/ SuperGlue [6]) 0.18s+0.11s=0.29s 1.17G (0.21G) 1.11s+0.27s=1.38s 5.69G (1.00G)

SuperGlue [5] Selected GT APs DenseGAP + GT APs

Fig. 2. Qualitative results of oracle anchor points. From left to right: results of SuperGlue [5]; 20 randomly sampled ground truth anchor points; results of
DenseGAP with 20 ground truth anchor points (GT APs) as input. We show top 500 correspondences and top 1000 correspondences in indoor scenes and
outdoor scenes respectively using our model. The correspondences are colored by their epipolar errors calculated based on ground truth relative poses (green
means inliers, and red means outliers). We set the error threshold to 1× 10−3 for both indoor and outdoor scenes.

TABLE III
ABLATION STUDY ON HPATCHES. WE REPORT THE MMA UNDER THE

THRESHOLD OF 1, 3, 5 AND 10 PIXELS. DOWNSAMPLING INPUTS OF OUR
MODEL WILL SLIGHTLY CHANGE THE PERFORMANCE IN LOW THRESHOLD

BUT WILL NOT CAUSE MAJOR EFFECT IN LARGE THRESHOLD; USING
ANCHOR POINTS FROM SIFT FEATURES HAS SOME DRAWBACKS BUT THE
RESULTS ARE STILL COMPETITIVE TO THE FULL MODEL; AND REMOVING

ADAPTIVE POSITIONAL EMBEDDING CAN GREATLY DEGRADE THE
PERFORMANCE OF OUR MODEL.

Method MMA(1px) MMA(3px) MMA(5px) MMA(10px)

Full Model 0.565 0.898 0.958 0.979
Model w/ DS 0.505 0.871 0.945 0.975

Model w/ SIFT 0.533 0.845 0.903 0.927
Model w/o APE 0.384 0.731 0.833 0.909

image edges. We visualize the attention weights in Fig. 3.
Since all the intra-points message-passing layers have similar
attention patterns, here we show the last layer only. Each layer
contains 4-head attention, and we choose the first two heads
for visualization. We observe that the attention in the points-
to-image layer is sparser and more condensed than intra-points

TABLE IV
INDOOR POSE ESTIMATION EVALUATION ON SCANNET [3] DATASET

USING GROUND TRUTH ANCHOR POINTS. THE ASTERISK SUPERSCRIPT (*)
INDICATES THE MODEL IS TRAINED USING 50 GROUND TRUTH ANCHOR
POINTS AND NOT FINE-TUNED ON SUPERGLUE [5] WHILE DENSEGAP

REPRESENTS THE MODEL WITH FINE-TUNING. NOTE THAT THE MODELS
WITHOUT FINE-TUNING ARE GENERALLY BETTER THAN THOSE WITH

FINE-TUNING DUE TO THE SMALLER GAP BETWEEN THE ANCHOR POINTS
USED FOR TRAINING AND TESTING WHEN INTRODUCING GROUND TRUTH

ANCHOR POINTS.

Method AUC(5) AUC(10) AUC(20)

DenseGAP+SuperGlue 17.01 36.07 55.66
DenseGAP+20 GT AP 16.11 34.21 54.06
DenseGAP+50 GT AP 19.14 38.78 58.41

DenseGAP+100 GT AP 21.35 41.35 60.68
DenseGAP*+20 GT AP 17.79 37.07 56.84
DenseGAP*+50 GT AP 29.15 49.24 67.44
DenseGAP*+100 GT AP 34.62 55.41 71.81

layers, mostly attending to a small neighborhood around it.



TABLE V
VISUAL LOCALIZATION EVALUATION ON INLOC [2] DATASET. WE EVALUATE OUR MODEL USING THE PIPELINE PROPOSED BY HLOC [6].

Method Duc1 Duc2
(0.25m,10◦) / (0.5m,10◦) / (1.0m,10◦)

HL [6]+SP [12]+SuperGlue [5] 46.5 / 65.7 / 77.8 51.9 / 72.5 / 79.4
HL [6]+DenseGAP 48.5 / 69.2/ 81.8 48.9 / 74.0 / 79.4

TABLE VI
POSE ESTIMATION EVALUATION ON THE SCANNET DATASET. THE *

INDICATES THE MODEL TRAINED ON MEGADEPTH [2].

Method AUC(5) AUC(10) AUC(20)

ORB [13]+GMS [14] 5.21 13.65 25.36
D2-Net [15] +NN 5.25 14.53 27.96

ContextDesc [16]+Ratio [9] 6.64 15.01 25.75
DualRC-Net [11]* 6.94 17.06 29.58

SP [12]+SuperGlue [5] 16.16 33.81 51.84
LofTR [17] 22.06 40.8 57.62
DenseGAP 17.01 36.07 55.66

DenseGAP+100 GT AP 34.62 55.41 71.81

V. MORE RESULTS

a) Indoor Pose Estimation: In our paper, we compare
our model with two state-of-the-art methods: SuperGlue [5]
and DualRC-Net [11] on the task of pose estimation. In
Tab. VI we further provide results of other methods tested
on the ScanNet [3] dataset. We notice that one recent work
LofTR [17] achieved better result compared to ours on this
task. However, as shown in the last row of the table (and
Sec.IV-0b), our model has great potential to improve when
combined with better anchor points.

b) Geometric Matching: In addition to the PCK eval-
uation shown in the main paper (Sec. 4.2) where we use
randomly sampled points as queries, we evaluate pixel-wise
dense correspondence, by generating correspondences for all
pixels in the query image (a.k.a. a dense flow). It takes about
10 seconds on an NVIDIA GTX 1080 Ti to generate a dense
flow for a 480×640 image pair. Most of the time is consumed
by memory allocation. The time cost can be reduced to about
2 seconds using a graphic card with larger memory (e.g.
NVIDIA Tesla V100). We show the qualitative results in
Fig. 4. By observing the confidence map in the 5th column
computed using the cycle consistency we define in the main
paper (Sec. 3.4), we find that our model can predict highly
confident correspondences for most of the visible pixels (e.g.
pixels in blue) while less confident matching usually occurs
in the occluded region (e.g. pixels in black). Compared to
the baseline method, our approach can generate better quality
results with fewer distortion artifacts and preserve the building
structures consistent with the query image.

c) Optical Flow: KITTI flow benchmark [18], [19] is one
of the major evaluations used in many works of dense corre-
spondence. We test our model on this evaluation and compare
it with other state-of-the-art methods, including the concurrent
work COTR [10]. As our model also generates confidence for
each prediction, we follow the same way by COTR [10] to

TABLE VII
RESULTS ON KITTI FLOW BENCHMARK. WE TEST OUR MODEL ON THE
2012 AND 2015 VERSION OF THE KITTI DATASET, AND REPORTS THE
AVERAGE END POINT ERROR (AEPE) AND THE FLOW OUTLIER RATIO

(‘FL’). NOTE THAT OUR MODEL IS ABOUT THREE MAGNITUDES FASTER
THAN COTR [10] AS SHOWN IN TAB. II.

Method KITTI-2012 KITTI-2015
AEPE↓ Fl.[%]↓ AEPE↓ Fl.[%]↓

GLU-Net [20] 3.34 18.93 9.79 37.52
GOCor [21] 2.68 15.43 6.68 27.57
COTR [10] 1.28 7.36 2.62 9.92

Ours 1.69 6.21 3.47 10.8

ensure a fair comparison. Same as COTR [10], we randomly
sample multiple points per image pair and evaluate only on
points where our method returns confident results from these
query points (whose error is under the threshold of 5 pixels).
For reference, we also compare with the state-of-the-art dense
correspondence methods (GLU-Net [20] and GOCor [21]) in
Tab. VII, with the number from COTR [10]. All of the results
are shown in Tab. VII. Our model achieves competitive results
with COTR [10], while our inference speed is about three
magnitudes faster than COTR [10] as shown in Tab. II.

d) Visual Localization: We also evaluate our model on
the task of visual localization, which aims to estimate 6 DoF
poses of the input images given the 2D to 3D correspondence
between an image database and its corresponding 3D models.
By matching each input image to the database, we can
establish the correspondence between the input image and 3D
models, thus predicting the absolute camera pose of the input.
We test our model using the Long-Term Visual Localization
Benchmark [22] on the popular InLoc dataset which contains
challenging indoor scenes with lots of textureless regions and
also provides ground truth 3D scene models for evaluating
the localization. To implement the full pipeline of the visual
localization, we adopt the public repository of Hierarchical
Localization [6], by only replacing its matching module with
our matching results. We use grid sampling to generate query
points from the image in the database, then find its correspond-
ing points in each input image, and finally, use the estimated
correspondence to compute the camera pose. We show the
quantitative result in Tab. V. Our model outperforms the
baseline method based on the matches generated by SuperGlue
in the same setting where matches less than 20 are skipped.

e) More Qualitative Comparisons: Finally, we show-
case more qualitative results on MegaDepth, ScanNet, and
HPatches, in Fig. 5, Fig. 6, and Fig. 7 respectively.
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Fig. 3. Visualization of the attention weights in intra-points and points-to-image message-passing layers. We visualize the attention for three target points in
each row. The 1st and 2nd rows share the same target points, and the 3rd and 4th rows share the same target points. Note that the attention in each head
have different patterns where different heads attend to points which have different spatial location distributions.



Reference Image Query Image GOCor [21] DenseGAP Confidence Map

Fig. 4. Qualitative results on geometric matching. The reference image (1st column) is warped to the query image (2nd column) based on the dense
correspondences generated by the baseline method (3rd) and our model (4th). The confidence maps of our predictions (represented by cycle consistency) are
also shown in the 5th column. The black pixels in the confidence map represent those with the cycle consistency larger than 10 pixels.



DualRC-Net [11] SuperGlue [5] DenseGAP

Fig. 5. Matching results on MegaDepth. Correspondences are colored by their epipolar errors calculated based on ground truth relative poses, and the threshold
is set to 1× 10−3. We select top 1000 matches for both DualRC-Net and our model (green means inliers, and red means outliers).



DualRC-Net [11] SuperGlue [5] DenseGAP

Fig. 6. Matching results on ScanNet. Correspondences are colored by their epipolar errors calculated based on ground truth relative poses, and the threshold
is set to 1× 10−3. We select top 500 matches for both DualRC-Net and our model (green means inliers, and red means outliers).



DualRC-Net [11] SuperGlue [5] DenseGAP

Fig. 7. Matching results on HPatches. Correspondences are colored by their reprojection errors calculated based on ground truth homography, and the threshold
is set to 5 pixels. We select top 1000 matches for both DualRC-Net and our model (green means inliers, and red means outliers).
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